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Abstract The operator involving problems are mostly handled by using the matrix
representations of the operators over a finite set of appropriately chosen basis func-
tions in a Hilbert space as long as the related problem permits. The algebraic operator
which multiplies its operand by a function is the focus of this work. We deal with
the univariate case for simplicity. We show that a rapidly converging scheme can be
constructed by defining an appropriate fluctuation operator which projects, in fact, to
the complement of the space spanned by appropriately chosen finite number of basis
functions. What we obtain here can be used in efficient numerical integration also.

Keywords Matrix representation · Fluctuation expansion · Hilbert spaces ·
Projection operators · Algebraic multiplication operators

1 Introduction

Matrix representations of linear operators have great importance in the solutions of
many linear problems like ordinary differential equations, partial differential equations
with appropriate initial and/or boundary conditions. These generally arise as inver-
sion or eigenpair determination problems. The area of mathematical chemistry covers
many applications amongst these problems. The algebraic operators which multiply
their operands by certain given functions’ values at a specific independent variable
value are at the focus here. Although the function may be univariate or multivariate
we prefer to deal with only univariate ones for simplicity. This does not bring any
remarkable limitation since the derivation of the formulae here can be easily extended
to the multivariate case. We are going to consider the linear operator ̂f as a mapping,
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from a denumerably infinite dimensional Hilbert space H over the functions which are
continuous and therefore square integrable on a given closed interval [a, b] and under
a given weight function, to the same space. The explicit definition of this operator is
as follows

̂f g(x) ≡ f (x)g(x), x ∈ [a, b] (1)

where g(x) stands for any given function in H. To get the chance of dealing with a
universal entity which does not depend on the structure of the function f (x) we define
the following operator

x̂ g(x) ≡ xg(x), x ∈ [a, b] (2)

where g(x) represents any given function from H as before. This new definition
enables us to write

̂f = f (̂x) (3)

Now we can consider the orthonormal basis function set for H as follows

U ≡ {ui (x)}∞i=1 (4)

which can be constructed from the ascending natural number powers of the indepen-
dent variable via an appropriate orthonormalization procedure like Gram–Schmidt or
Cholesky method. The operator ̂f has an infinite matrix representation on H, whose
general term at the intersection of the i th row and j th column is given below

[

M( ̂f )
]

i j ≡ (

ui , ̂f u j
)

, i, j = 1, 2, . . . (5)

where M stands for the mapping (the explicit definition and certain properties of its
restriction over a finite subspace will be given a little bit later) from the space of linear
operators between H and H to the matrices denoting the matrix representation of the
operator under consideration, and, we have used H ’s inner product whose explicit
definition is as follows

(g1, g2) ≡
b

∫

a

dxw(x)g1(x)g2(x), g1(x), g2(x) ∈ H (6)

and w(x) stands for a given weight function in the last equality.
Since the general tendency to approximate this infinite matrix representation is to

truncate it as a block from its left uppermost part and then to tune the truncation order
to get a desired approximation unless a very specific structure to get analytic results
in the matrix representation exists, we define the n-dimensional subspace, Hn , of H
over the following basis set

Un ≡ {ui (x)}n
i=1 , n = 1, 2, . . . (7)
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We can uniquely decompose the operator ̂f to four components characterizing
transitions amongst Hn and its complement to the whole space H , that is, (H−Hn)

as follows

̂f ≡ ̂fss + ̂fsc + ̂fcs + ̂fcc (8)

where the subindices s and c stand for recalling subspace Hn and its complement
(H − Hn) respectively. The right hand side components are defined as follows

̂fss ≡ ̂P(n)
̂f ̂P(n), ̂fsc ≡ ̂P(n)

̂f
[

̂I − ̂P(n)
]

,
̂fcs ≡ [

̂I − ̂P(n)
]

̂f ̂P(n), ̂fcc ≡ [

̂I − ̂P(n)
]

̂f
[

̂I − ̂P(n)
] (9)

where ̂I denotes the unit operator of H and ̂P(n) is explicitly defined below

̂P(n)g(x) ≡
n

∑

i=1

(ui , g) ui (x), n = 1, 2, . . . g(x) ∈ H (10)

As can be noticed immediately, ̂P(n) is the unit operator for ̂Hn and it projects from H
to Hn . Its complementary companion [̂I − ̂P(n)] is the unit operator for (H−Hn) and
projects from H to (H − Hn). In the light of these informations, any decomposition
component of ̂f at the right hand side of (8) maps from the subspace characterized by
the second subindex to the subspace characterized by the first subindex of the com-
ponent. Amongst these components, ̂fss is the most important one which maps from
̂Hn to ̂Hn . Its matrix representation is just what we want to get as an approximation
to the matrix representation of ̂f .

Now we are ready to deal with the matrix representation related issues more in-
tensely. As a first step we consider the set of linear bounded operators L from H
to (or into) H and define the restricted matrix representation operator Mn(̂L) whose
argument is taken from L. It creates n × n matrix representation on Hn for ̂L , whose
general term at the intersection of the i th row and j th column is (ui , ̂Lu j ). As can be
easily proven, this operator has the following properties beyond its linearity.

Mn

(

̂P(n)
̂L

)

= Mn

(

̂L ̂P(n)
)

= Mn
(

̂L
)

, ̂L ∈ L (11)

Mn

(

̂L1 ̂P(n)
̂L2

)

= Mn
(

̂L1
)

Mn
(

̂L2
)

, ̂L1, ̂L2 ∈ L (12)

Mn

([

̂I − ̂P(n)
]

̂L
)

= Mn

(

̂L
[

̂I − ̂P(n)
])

= 0, ̂L ∈ L (13)

where 0 stands for n × n zero matrix.
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If we take ̂L as ̂I , the unit operator of H, in (11) and remember that the matrix
representation of ̂I on Hn is In , the n × n unit matrix, then we can write

Mn

(

̂P(n)
)

= In (14)

On the other hand, by setting ̂L1 = x̂ and ̂L2 = x̂ k in (12) for natural number
values of k, we can write

Mn

(

x̂ ̂P(n) x̂ k
)

= Mn (̂x) Mn

(

x̂ k
)

, k = 0, 1, 2, . . . (15)

which urges us to seek an approximate formula for the matrix representation of x̂ k .
To this end we can attempt to construct a recursion at least approximately and write
the following identity

x̂ k+1 ≡ x̂ ̂P(n) x̂ k + x̂
[

̂I − ̂P(n)
]

x̂ k, k = 0, 1, 2, . . . (16)

which implies the following matrix equality from (16)

M
(

x̂ k+1
)

≡ M (̂x) M
(

x̂ k
)

+ M
(

x̂
[

̂I − ̂P(n)
]

x̂ k
)

, k = 0, 1, 2, . . . (17)

The rightmost term of this equality contains the operator [̂I − ̂P(n)]̂xk whose norm
decreases as n grows. For a specified precision, it is always possible to find a suf-
ficiently high value of n, for which the second term of the right hand side becomes
ignorable beside the first one. This implies that

M(pr)
n

(

x̂ k+1
)

≈ M(pr)
n (̂x) M(pr)

n

(

x̂ k
)

, k = 0, 1, 2, . . . n ≥ ncr (18)

where the superscript (pr) specifies the utilized precision in the calculations and the
subscript cr specifies the critical dimension, for n values greater than or equals to
which, approximation becomes an equality within the precision (pr).

Equation 18 can be iteratively solved to give

M(pr)
n

(

x̂ k
)

≈ X(pr)
n

k
, k = 0, 1, 2, . . . n ≥ ncr (19)

X(pr)
n ≡ M(pr)

n (̂x) , n ≥ ncr (20)

Equation 19 is the basic source of the recently proven fluctuationlessness theorem [6].
As a matter of fact, the operator [̂I − ̂P(n)] together with the powers of the opera-
tor x̂ describes the fluctuations (outgoing and incoming transitions) between Hn and
its complement to H. Hence the one or more than one appearances in the formulae
can be considered as fluctuations and the approximations by ignoring them may be
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called “fluctuationlessness case”. In this point of view (19) is the fluctuationlessness
approximation of the natural number power of the independent variable related alge-
braic multiplication operator.

At this point we assume that the function f (x) is analytic in a region containing
the interval [a, b] in the x complex plane. This means that it can be expanded to the
following series.

f (x) =
∞
∑

i=0

fi xi (21)

which means

̂f =
∞
∑

i=0

fi x̂ i (22)

and

M(pr)
n

(

̂f
) =

∞
∑

i=0

fi M
(pr)
n (̂x )i = f

(

X(pr)
n

)

(23)

This is the mathematical expression of the recently proven fluctuationlessness theorem
[6] which has been used in many integration related problems [1–5,7–9] successfully.
(Here, the references are all from the author’s group. This is not because of over-
emphasizing on this group’s works. Within the knowledge of the author and recent
comprehensive literature, all these kinds of approaches seem to be quite new and they
will attract other researchers concerning with these kind issues.) It states that the matrix
representation of a function on Hn is equal to the image of the matrix representation
of the independent variable on Hn under the function for sufficiently high n values
within a prescribed calculation precision. Our purpose here is to use this fact for the
evaluation of the matrix representation on Hn for a prescribed accuracy.

Paper is organised as follows. The second section covers the basic idea for the
evaluation. The third section involves the illustrative numerical implementations. The
fourth section including the concluding remarks finalizes the paper.

2 Basic idea behind the evaluation

Consider the subspaces Hn and Hm of H with m > n. We can write

M(pr)
n

(

̂f
) = ET

m→nM(pr)
m

(

̂f
)

Em→n (24)

where Em→n chops out the columns of the m dimensional matrix representation if
their indices are greater than n. In other words, it is derived from the m-dimensional
unit matrix by excluding all columns except the first n leftmost ones. Equation 24 is
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exact and can be approximated via fluctuationlessness approximation as follows for
m values greater than a critical value corresponding to a given precision

M(pr)
n

(

̂f
) = ET

m→n f
(

X(pr)
m

)

Em→n (25)

Now as m grows up to infinity f (X(pr)
m ) approximates M(pr)

m ( ̂f ) more precisely.
Therefore we can construct an algorithm which evaluates the right hand side of (25)
for various increasing m values starting from m = n until the evaluations for two
consecutive m values match within the prescribed precision.

Although there are various methods to evaluate the matrix f (X(pr)
m ) and subroutines

are available in certain computer programming or scripting languages we recommend
to use the spectral resolution. To this end we need to evaluate the eigenpairs (ξ (pr)

i

and x(pr)
i denote the i th eigenvalue and the corresponding eigenvectors respectively).

There are a lot of methods to this end. However, the important thing here is the eval-
uations are needed to be done only once. Then they can be stored for future uses like
it is done for the weight and nodal parameters of the quadratures. In other words,
there is a strong universality of the evaluations of the eigenpairs since they do not
depend on the function f (x). Another important thing about the eigenvalues eval-
uation is the procedure’s ill-posedness which is increasing with growing m values.
This comes from the locations of the eigenvalues. As can be proven via upper and
lower bounds of a Rayleigh quotient constructed over the matrix X(pr)

n the eigenvalues
must be located at the interior points of the interval [a, b]. As m grows the number of
the eigenvalues in this interval increases to result in distance decreases between two
consecutive eigenvalues. The closer the consecutive eigenvalue couples the higher
ill-posedness. This means that the ascending m values require increasing calculation
precision. This demands flexibility in the precision increase and can be provided by
symbolic programming languages like Mathematica, MuPAD or by some scientific
libraries for C or C-like computer languages. High precision requirement and the
ill-posedness may increase the computational complexity of the eigenvalue determi-
nation. However, the full procedure’s computational complexity is not affected from
this, since the eigenvalue determination is in fact outside the procedure and needed to
be done just once.

Now by assuming the eigenpairs are evaluated and available for the procedure we
can write

f
(

X(pr)
m

)

=
m

∑

i=1

f
(

ξ
(pr)
i

)

x(pr)
i x(pr)

i

T
(26)

The utilization of this formula in (25) gives

M(pr)
n

(

̂f
) =

m
∑

i=1

f
(

ξ
(pr)
i

)

y(pr)
i y(pr)

i

T
(27)
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where

y(pr)
i ≡ ET

m→nx(pr)
i , i = 1, . . . , m (28)

This completes the construction of the algorithm.

3 Illustrative implementations

In this section we give some numerical implementations for certain illustrative cases.
In implementations we have used MuPAD Computer Algebra System and have chosen
the interval ends as 0 and 1 without any loss of generality because an appropriate affine
transformation can always bring us to the case of this very specific interval from any
finite and closed interval. Our first example focuses on the function

f (x) ≡ eαx (29)

where α is used somehow to represent the curvature of the function. This function has
no singularity at any finite region of the x complex plane. It has an essential singularity
at infinity.

Since its analiticity extends towards infinity we can anticipate good quality in the
approximation via our method here. This, in fact, happens. However, approximation
quality decreases parallel to the increase in α as can be seen from Table 1.

The results in Table 1 are obtained within 50 digit accuracy and show that the con-
vergence is very rapid in the case where α = 1. For m values between 5 and 20 fifty
correct digits are obtained. That is, each increment in m by 1 brings three more correct
digits. However, this rapidity decreases as α climbs to 20. The average correct digit
gain for an increment by 1 in m decreases to almost 1 in the last column. This is an
expected negative behavior. However, by appropriately increasing m and the precision
in the calculations appropriately one can always get any desired accuracy.

Our second example focuses on the case where f (x) ≡ cos αx . This function
has also no singularity in any finite region of x complex plane. However it is not
monotonously increasing function on the interval [a, b] for all α values. Its oscillatory
behavior increases as α grows. The results for this case are given in Table 2.

First three columns show almost same behavior of the previous case. However,
the last column values may be considered as the signal of the negative effect of high
oscillations on the approximation quality. However it is not so clear as much as the

Table 1 Relative error with respect to the exact value in the Frobenius norm of the approximated five
dimensional (n = 5) matrix representations with a few m values for several curvature parameter values in
the case of f (x) = eαx

m α = 1 α = 5 α = 10 α = 20

5 1.298 × 10−2 1.347 × 10−1 2.408 × 10−1 4.015 × 10−1

10 5.166 × 10−17 3.227 × 10−9 1.992 × 10−6 3.024 × 10−4

15 2.111 × 10−35 1.217 × 10−20 6.493 × 10−15 5.515 × 10−10

20 8.449 × 10−51 4.755 × 10−34 2.432 × 10−25 1.646 × 10−17
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Table 2 Relative error with respect to the exact value in the Frobenius norm of the approximated five
dimensional (n = 5) matrix representations with a few m values for several curvature parameter values in
the case of f (x) = cos (αx)

m α = 1 α = 5 α = 10 α = 20

5 1.445 × 10−2 2.986 × 10−1 5.090 × 10−1 1.122 × 10−1

10 5.978 × 10−17 1.599 × 10−8 2.146 × 10−5 5.699 × 10−2

15 2.453 × 10−35 6.719 × 10−20 8.908 × 10−14 5.732 × 10−7

20 1.593 × 10−51 2.738 × 10−33 3.729 × 10−24 3.356 × 10−14

effect of the curvature on the quality. To clarify this point we have investigated the
case where α = 50, n = 5, m = 20 for the functions eαx and cos αx . The former
function have given 2.056 × 10−9 in the Frobenius norm relative error while the latter
one is giving the value 1.102 × 10−2. This apparently shows the negative influence
of increasing oscillations in the value of the function on the approximation quality.
However, the curvature dependence seems to be more sensitive than the oscillation
dependence for the approximation quality.

Our third example is directed to understand the effect of the polar singularity loca-
tion on the approximation quality. We choose

f (x) ≡ 1

1 + α
β

x
(30)

which has just a single pole located at x = −β/α as the only singularity. Here we have
used two parameters deliberately to somehow distinguish the curvature and singular-
ity location dependences. When α, the curvature parameter, is 1,−β is the location
of the singularity. Hence we call it the parameter for the singularity location on the
negative real axis or briefly “singularity parameter”. On the other hand, the case where
β = 1 leaves α alone to describe the curvature. Hence we call α curvature parameter.
That is, α = 1 and β = 1 normalizations are used to define the singularity location
parameter and curvature parameters respectively. Except the point where x = −β/α

the function in (30) is analytic everywhere in the x complex plane. For a fixed positive
α value the pole is at minus infinity when β is at infinity and it moves from there to
−1/α as β diminishes down to 1. Therefore it gets closer to 0 which is the left end of
the interval under consideration. This urges us to anticipate increasing negative effect
on the approximation quality when β approaches from right to 1. Table 3 is about the
investigation of the increasing curvature’s effect on the approximation quality. There
is nothing unexpected except the shift in α to the left to get the similar quality behavior
of the two previous cases.

As can be noticed immediately, the quality is more sensitive to curvature than
before. Table 4 is constructed for the case where α = 20, n = 5, m = 20 for several
β values to reveal the positive effect of the increasing β values on the quality.

Our fourth example focuses on the simplest case of the branch point singularity.
We concern with the following function which has two branch points, one at infinity
and one at a finite point of the independent variable’s complex plane.
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Table 3 Relative error with respect to the exact value in the Frobenius norm of the approximated five
dimensional (n = 5) matrix representations for several curvature parameter values in the case of f (x) =

1
1+ α

β
x

when β = 1

m α = 0.1 α = 1 α = 10 α = 20

5 2.564 × 10−4 1.338 × 10−2 1.508 × 10−1 2.444 × 10−1

10 1.543 × 10−20 3.027 × 10−10 3.121 × 10−4 3.079 × 10−3

15 9.154 × 10−37 6.747 × 10−18 6.274 × 10−7 3.720 × 10−5

20 5.411 × 10−53 1.498 × 10−25 1.253 × 10−9 4.449 × 10−7

Table 4 Relative error with respect to the exact value in the Frobenius norm of the approxi-
mated five dimensional (n = 5) matrix representations for several β values in the case of f (x) =

1
1+ α

β
x

when α = 20

m β = 1 β = 10 β = 20 β = 50

5 2.444 × 10−1 3.304 × 10−2 1.338 × 10−2 3.186 × 10−3

10 3.079 × 10−3 6.464 × 10−8 3.027 × 10−10 5.642 × 10−14

15 3.720 × 10−5 1.244 × 10−13 6.747 × 10−18 9.851 × 10−25

20 4.449 × 10−7 2.384 × 10−19 1.498 × 10−25 1.713 × 10−35

Table 5 Relative error with respect to the exact value in the Frobenius norm of the true and approxi-
mated five dimensional (n = 5) matrix representations for several curvature parameter values in the case

of f (x) =
√

1 + α
β x when β = 1

m α = 0.1 α = 1 α = 10 α = 20

5 3.204 × 10−5 1.640 × 10−3 1.452 × 10−2 1.996 × 10−2

10 1.081 × 10−22 2.103 × 10−12 1.917 × 10−6 1.719 × 10−5

15 2.546 × 10−39 1.864 × 10−20 6.274 × 10−7 8.650 × 10−8

20 8.725 × 10−56 2.348 × 10−28 1.578 × 10−9 5.993 × 10−10

f (x) ≡
√

1 + α

β
x (31)

where α and β stand for the curvature parameter and the singularity location parameter
respectively as we defined before (Table 5).

The results in this table do not show anything peculiar to this case. They behave
quite similar to the ones in the case of simple polar singularity. Of course there will
be certain differences in the obtained accuracy for a given value of α from function to
function.

Same thing is true for also for the convergences corresponding to different β values
for a fixed curvature parameter value (α). These are given in Table 6.
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Table 6 Relative error with respect to the exact value in the Frobenius norm of the approxi-
mated five dimensional (n = 5) matrix representations for several β values in the case of f (x) =
√

1 + α
β

x when α = 20

m β = 1 β = 10 β = 20 β = 50

5 1.996 × 10−2 3.928 × 10−3 1.640 × 10−3 3.964 × 10−4

10 1.719 × 10−5 4.428 × 10−10 2.103 × 10−12 3.946 × 10−16

15 8.650 × 10−8 3.402 × 10−16 1.864 × 10−20 2.736 × 10−27

20 5.993 × 10−10 3.706 × 10−22 2.348 × 10−28 2.698 × 10−38

Our next examples is chosen to test the case of branch point singularity with infinite
Riemann sheets.

f (x) ≡ ln

(

1 + α

β
x

)

(32)

where α and β can be considered as the curvature and singularity location parameters
respectively as we did before. The results for this case are given in Tables 7 and 8.

Table 7 does not imply any noticeable effect of the Riemann sheets’ number on the
convergence rate. Of course, there will be slight differences in the convergence from
function to function and there are signals of this in the comparison of Tables 5 and 7.

Until now, we have dealt with the case where the finite branch point is located to
the left of the interval. We could deal with the cases where the finite branch point is

Table 7 Relative error with respect to the exact value in the Frobenius norm of the approximated five
dimensional (n = 5) matrix representations for several curvature parameter values in the case of f (x) =
ln

(

1 + α
β x

)

when β = 1

m α = 0.1 α = 1 α = 10 α = 20

5 2.220 × 10−3 1.529 × 10−2 4.488 × 10−2 5.366 × 10−2

10 2.227 × 10−20 5.838 × 10−11 1.803 × 10−5 1.424 × 10−4

15 7.208 × 10−37 7.111 × 10−19 2.034 × 10−8 9.797 × 10−7

20 2.929 × 10−53 1.086 × 10−26 2.825 × 10−11 8.210 × 10−9

Table 8 Relative error with respect to the exact value in the Frobenius norm of the approximated five

dimensional (n = 5) matrix representations for several β values in the case of f (x) = ln
(

1 + α
β

x
)

when

α = 20

m β = 1 β = 10 β = 20 β = 50

5 5.366 × 10−2 2.331 × 10−2 1.529 × 10−2 7.671 × 10−3

10 1.424 × 10−4 7.849 × 10−9 5.838 × 10−11 2.271 × 10−14

15 9.79 × 10−7 3.284 × 10−15 7.111 × 10−19 2.167 × 10−25

20 8.210 × 10−9 1.094 × 10−20 1.086 × 10−26 2.588 × 10−36
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located to the right of the interval. In fact, we did and noticed nothing different in the
convergence behavior except slight changes from function to function. We find it to
report those results here unnecessary.

Table 8 shows that there is a slight worsening in the convergence for this case. That
is, one can conjecture that there is a slight negative effect of the infinity in the number
of the Riemann sheets. In other words, the convergence is slightly sensitive to the
number of Riemann sheets beside the dependence on the curvature or the singularity
location.

This example finalizes this section, although the number of the examples could be
increased to cover some other secondary or maybe much less important cases.

4 Concluding remarks

Author believes that what we have stated in the previous sections covers all primary
remarks and the rest are secondary items which may be skipped. The method is simple
and universal and it is possible to get any desired accuracy in the matrix representation
approximation just by appropriately choosing two parameters, m and pr which are
the internal matrix dimension and the precision in the calculations respectively. The
approximation power of the method comes from the fluctuationlessness approxima-
tion and its convergence rate is remarkably good in many moderate cases. What we
have obtained here were limited to univariate cases. However, the structure of the
method allows us to extend it to the multivariate cases by paying sufficient care to the
construction of multivariate basis functions.

Another important thing is numerical integration. If we choose n = 1 and the
weight function is taken normalized to have unit integral then the only matrix rep-
resentation element becomes the integral of f (x). In this case m different x values
will form the set of nodes where the function values are evaluated. The corresponding
weight parameter to each node will be the square of the first element of the eigenvec-
tor corresponding to the eigenvalue which is that node in fact. This gives an m-node
quadrature like formula. The comparison of the result of this formula with the stand-
ing quadratures and methods like Gauss quadratures and Romberg method for same
number of nodes revealed the fact that this method may become apparently superior
to these methods when appropriate basis set is used although we have not given any
result since it is outside the scope of this paper. This fact is due to very possibly the
natural selections of the nodes to suppress the error coming from fluctuations. One
can develop methods or formulae to estimate the error and then compare with the ones
of the existing approaches, to prove the superiority. This may be a future concern for
interested readers involving us.

Acknowledgements Author is grateful to Turkish Academy of Sciences for its support.
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